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The method of thin plate spline had been extensively used in the application of

landmark-based image registration, where landmarks are placed on images of interest to

represent sets of data points required for interpolation. Since these landmarks are often

manually selected, their placements are highly susceptible to errors. Thus these errors

in landmark placements lead to errors in the interpolating function. In this thesis, the

mathematical background of thin plate splines will be explored by revisiting previous

work by Duchon. Then, errors will be added to landmarks to observe the change in

behaviour of the thin plate spline interpolant with the goal of obtaining an upper bound

for its error. Preliminary results will be presented near the end of the thesis.
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Chapter 1

Introduction

The alignment of multiple images against a single image is a procedure known as image

registration. Image registration has significant importance in medical imaging as it en-

ables matching of an object in different scenarios. For instance, multiple images of the

same patient are taken to observe any biological and/or physiological changes that may

occur over time. However, each series of images will experience some level of deforma-

tion due to a number of uncontrollable parameters. For example, figure 1.1 contain two

images of a computed tomography (CT) scan of a human knee taken in two different

points in time, where the first image may be taken during the patient’s first visit, and

the second image is taken during a follow-up appointment. It is evident that the knee

had undergone significant movement in the second image. Hence initial diagnosis ob-

tained using the first image may not translate over to the second image properly. Image

registration bridges this gap by establishing a correspondence between the before and

after images. This allows information obtained from the first image to be transferred to

other images with accuracy.

Image registration is invaluable in matching images that undergo natural movement

such as breathing patterns and tissue deformation from posture. In lung and heart

imaging, the deformation is natural simply due to the different phases of breathing and

1



Chapter 1. Introduction 2

Figure 1.1: Computed tomography (CT) scan of a human knee. [6]

cardiac cycles respectively. By matching features and/or regions of interest in different

images, not only does it allow information to be translated between the images, it also

allows the prediction of surrounding deformation by imposing the appropriate constraints

for the given scenario. This is especially crucial in the treatment of cancer, as images

of tumours are captured over time. By registering these images against one another,

this enables doctors to monitor, and sometimes even predict the growth of malignant

tumours. In image-guided surgery, efficient and accurate registration methods are highly

valued as diagnosis is determined using pre-operation images which do not reflect the

patient’s posture and/or position during a procedure. Registration that can be computed

in realtime essentially enables pre-operation diagnosis to be brought into, and updated,

in a surgical environment as opposed to relying strictly on the immediate discretion of

the surgeon.

At minimum, image registration requires two images. In the simplest case, these

two images are known as the reference image (source), and a template image (target).

Ideally, we would like to find a transformation where the reference image under this

transformation will match perfectly with the template image. In multi-frame registration,

multiple reference images are chosen to be registered against a single template image

as the name suggests. These images are typically taken from individual frames of a

short video sequence. This method is usually chosen for situations where a single pair of
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images do not provide sufficient information. Through having multiple input images, this

allows additional information about the setting to be included at the cost of increased

computational costs.

Methods for image registration are separated into two general categories: intensity

based registration and feature based registration. As the names suggest, intensity based

registration matches images using information obtained from the pixel intensities of the

input images. This is typically treated by viewing the image as the discretization of

a two dimensional signal, then applying the appropriate constraints (such as similarity

measures, regularization, and boundary conditions) to recover the ideal transformation.

As a result, the input images are considered as a whole which results in an unbiased

global transformation. This is particularly useful for situations where registration is re-

quired across the majority of the images. On the other hand, feature based registration

methods align images by placing sets of landmarks on both reference and template im-

ages. Each landmark in the reference image will have a corresponding landmark in the

template image. This is used to physically identify features of interest on both images,

and to associate a direct correspondence of one common region between the reference

and the template. Unlike intensity based registration, feature based registration creates

a bias at the locations where these landmarks are placed, as it explicitly dictates how

the transformation must behave at these points. In turn, this preserves the geometrical

structure during the registration procedure. As a result, this transformation is completely

independent from pixel data. This enables registration between images taken from differ-

ent modalities, such as computerized tomography (CT) and magnetic resonance (MR),

which is a large advantage over intensity-based methods. An example shown in figure 1.2

presents a scenario where images of the brain were captured using different modalities

(T1 versus T2 weighted MRI).

The primary focus of this thesis will be on landmark-based registration, in particular,

using thin plate splines (TPS). The mathematical background of TPS and its properties
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Figure 1.2: T1/T2 weighted MR scan of the brain. [6]

will be explored through revisiting the results from previous work by Duchon [3], Book-

stein [1], and Wahba [7]. We will then continue by exploring how the TPS interpolant is

affected if the given data suffers from errors.
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Thin Plate Spline (TPS)

2.1 Splines

Landmark-based registration is performed by finding a transformation that matches the

one set of data points with the other set of data points under such transformation. If these

data points match perfectly, then landmark-based registration is simply an interpolation

problem in disguise. The problem then becomes finding a transformation that obeys these

interpolating condition, while satisfying other constraints such as minimizing sudden

deformations. The focus of this chapter will be on thin plate splines (TPS), one of the

many landmark based registration methods that is widely used in medical imaging.

Splines are among one of the most popular methods of data interpolation. They

are constructed as piecewise polynomials where continuity and differentiability up to a

certain order is preserved at the points where the sub-polynomials meet. For example,

a cubic spline is a piecewise cubic function, where continuity and differentiability up to

second order is preserved at the ends of each sub-function. By preserving differentiability

at the ends of each piece, it imposes a smoothing condition against the spline based on

the highest order derivative that is preserved.

Unlike traditional splines, thin plate spline (TPS) is a spline interpolation method

5
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where the smoothness of the spline is controlled by a gradient based regularization term.

This regularization is designed to simulate the energy required to bend a thin sheet of

metal. This is reflected in the choice of basis functions in the interpolant. This interpolant

comprises of an affine part which controls the overall shape of the spline, and a non-linear

part using radial basis functions to produce deformations. The radial basis functions are

based on the fundamental solution of the biharmonic operator, a fourth order partial

differential operator that is highly similar to the spatial component of the homogeneous

Euler-Bernoulli beam equation.

2.2 Mathematical Background

In this section, the mathematical formulation of thin plate spline will be explored. To

begin, let {rj}, {tj}, j = 1, . . . , n represent the two different sets of data points. We want

to find a smooth function f : Ω ⊂ Rd → Rd that satisfies the interpolation conditions

f(rj) = tj, j = 1, . . . , n. (2.1)

As long as these conditions are met, it is immediately a minimizer of the functional

T [f ] =
n∑
j=1

‖f(rj)− tj‖2
2 (2.2)

where ‖·‖2 is the Euclidean 2-norm. The smoothness of this interpolating function will

vary depending on how spread out the data points are. Data points that are spread

out will yield a smoother result as opposed to data points that are clustered together.

This smoothness can also be controlled by adding a gradient based regularization term at

the expense of losing the interpolating conditions. The combination of the interpolation

conditions and regularization produces the objective functional

J [f ] =
n∑
j=1

‖f(rj)− tj‖2
2 + λ

∫
Ω

|∇mf |2dx (2.3)
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where Ω is the domain of the image. The function f that minimizes 2.3 is known as the

polyharmonic spline. Thin plate spline (TPS) is one specific case of the polyharmonic

spline by choosing m = 2. The smoothness of the result is controlled by the parameter

λ ≥ 0. In particular, the thin plate spline interpolant minimizes the following specific

objective functional

J [f ] =
n∑
j=1

‖rj − f(tj)‖2
2 + λ

∫
Ω

[(∂2f

∂x2
1

)2

+ 2
( ∂2f

∂x1∂x2

)2

+
(∂2f

∂x2
2

)2]
dx (2.4)

This spline method was originally designed by Duchon [3] to obtain a closed form solution

for thin plate spline. Wahba [7] later proved the existence of a unique minimizer for

the above variational problem. This unique solution has a representation as a linear

combination of a affine and a non-affine part of the form

f(x) = a0 + a1x1 + a2x2 +
n∑
j=1

cjφ(‖x− rj‖2) (2.5)

where x = (x1, x2) ∈ R2 and φ(r) = 1
8π
r2 ln r is the fundamental solution of the bihar-

monic harmonic operator, i.e. ∆2φ = δ(0,0). In many literature, φ(r) is often seen as

φ(r) = r2 ln r as the pre-factor is typically absorbed into the coefficient. φ(r) are fre-

quently called radial basis functions, as it serves as a family of nonlinear basis functions

in the interpolant that are radially symmetric. The non-affine part of the solution is

responsible for the local deformations of the spline caused by the data points. At the

infinities, these non-affine components vanishes to 0 which causes the spline to be char-

acterized by the affine part of the solution at locations far away from the data points.

Note that by choosing f to be in this form, there is now a unique solution to 2.2 as it

was ill-posed if f was chosen from the space of all continuous functions.

In the context of image registration, the sets of data points {rj} and {tj} are often

referred to as landmarks on the reference and template images respectively. For simplicity,

we will focus on the 2-dimensional case (d = 2) but it can extended to higher dimensional

images with relative ease. Since the radial basis functions of the interpolant are centred
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around the reference landmarks, these landmarks are sometimes referred to as centres. It

shall be noted that throughout this thesis, any superscripts that appear in coefficients and

landmarks will denote the corresponding spatial dimension unless otherwise indicated.

The two coordinate directions will simply be x1 and x2.

2.3 Coefficients of TPS Interpolant

Recall from the previous section that TPS is a linear combination of an affine and non-

affine part as shown in equation 2.5. The solution spline is fully determined by the

coefficients obtained using the given data points. As an interpolation problem, each

reference and template landmark must satisfy the condition

tj = f(rj) = a0 + a1r
1
j + a2r

2
j +

n∑
i=1

cjφ(‖rj − ri‖2). (2.6)

The collection of this condition against every landmark results in the linear system



φ(‖r1 − r1‖2) φ(‖r1 − r2‖2) . . . φ(‖r1 − rn‖2) 1 r1
1 r2

1

φ(‖r2 − r1‖2) φ(‖r2 − r2‖2) . . . φ(‖r2 − rn‖2) 1 r1
2 r2

2

...
...

. . .
...

...
...

...

φ(‖rn − r1‖2) φ(‖rn − r2‖2) . . . φ(‖rn − rn‖2) 1 r1
n r2

n





c1

...

cn

a0

a1

a2


=



t1

t2
...

tn


.

(2.7)

For compactness, we can the define the matrices and vectors

A =



φ(‖r1 − r1‖2) φ(‖r1 − r2‖2) . . . φ(‖r1 − rn‖2)

φ(‖r2 − r1‖2) φ(‖r2 − r2‖2) . . . φ(‖r2 − rn‖2)

...
...

. . .
...

φ(‖rn − r1‖2) φ(‖rn − r2‖2) . . . φ(‖rn − rn‖2)


, (2.8)
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B =


1 1 . . . 1

r1
1 r1

2 . . . r1
n

r2
1 r2

2 . . . r2
n


T

, (2.9)

c = (c1, c2, . . . , cn)T , (2.10)

a = (a0, a1, a2)T , (2.11)

t = (t1, t2, . . . , tn)T (2.12)

which reduces the expansion to

(A | B)(c, a)T = t. (2.13)

This gives us n equations for n+ 3 unknowns. A non-singular system can be constructed

by adding the constraints

n∑
j=1

cj = 0, (2.14)

n∑
j=1

cjr
1
j = 0, (2.15)

n∑
j=1

cjr
2
j = 0. (2.16)

These constraints are added as orthogonality conditions that ensure the deformation

created by the non-linear radial basis functions are in the direction orthogonal to the

affine part of the spline. In addition, these constraints also imposes a condition where

the higher order derivatives of the φ(r) vanishes to zero as r → ∞, which gives the

property that the spline asymptotically approaches the affine part of the solution. Its

mathematical details will be explored on in the later part of this section. In summary,

The thin plate spline coefficients are then determined by solving the block linear system A B

BT 0


c

a

 =

t

0

 . (2.17)
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Note that this matrix has no dependency on the regularization parameter λ which corre-

sponds to a direct interpolation against the radial basis functions. We want to determine

a generalized system that is dependent on λ which also agrees with the matrix above

when λ = 0. To do this, we first rewrite the interpolation condition in the objective

function from equation 2.3 in terms of delta functions. This gives us

n∑
j=1

‖f(rj)− tj‖2
2 =

∫
Ω

n∑
j=1

‖f(x)− tj‖2
2δ(x− rj)dx. (2.18)

Applying this to equation 2.4 rewrites the TPS objective functional as

J [f ] =

∫
Ω

(
n∑
j=1

‖f(x)− tj‖2
2δ(x− rj) + λ

[(∂2f

∂x2
1

)
+ 2
( ∂2f

∂x1x2

)2

+
(∂2f

∂x2
2

)2
])

dx.

(2.19)

Let F (x, f, ∂α1f, ∂α2f, ∂α3f) be the integrand above, where α = (α1, α2, α3) is a multi-

index across all second order partial derivatives of f . Then the function f that minimizes

the above variational problem must satisfy the corresponding Euler-Lagrange equation

∂F

∂f
+

∂2

∂x2
1

( ∂F

∂(∂α1f)

)
+

∂2

∂x1∂x2

( ∂F

∂(∂α2f)

)
+

∂2

∂x2
2

( ∂F

∂(∂α3f)

)
= 0, (2.20)

where

∂α1f =
∂2f

∂x2
1

, (2.21)

∂α2f =
∂2f

∂x1∂x2

, (2.22)

∂α3f =
∂2f

∂x2
2

. (2.23)

Computing each derivative explicitly, we have

∂F

∂f
= 2

n∑
j=1

‖f(x)− tj‖2δ(x− rj), (2.24)

∂2

∂x2
1

( ∂F

∂(∂α1f)

)
= 2λ

∂4f

∂x4
1

, (2.25)

∂2

∂x1∂x2

( ∂F

∂(∂α2f)

)
= 4λ

∂4f

∂x2
1∂x

2
2

, (2.26)

∂2

∂x2
2

( ∂F

∂(∂α3f)

)
= 2λ

∂4f

∂x4
2

. (2.27)
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Then the corresponding Euler-Lagrange equation is

n∑
j=1

‖f(x)− tj‖2δ(x− rj) + λ

[
∂4f

∂x4
1

+ 2
∂4f

∂x2
1∂x

2
2

+
∂4f

∂x4
2

]
= 0, (2.28)

or more compactly
n∑
j=1

‖f(x)− tj‖2δ(x− rj) + λ∆2f = 0. (2.29)

Now consider any test function ψ(x) such that supp(ψ) = Ω, then f(x) is consider a

weak solution if the following holds∫
Ω

(
n∑
j=1

‖f(x)− tj‖2δ(x− rj)ψ(x) + λ(∆2f)ψ(x)

)
dx = 0. (2.30)

To extract a delta function from the second term of the integral, we applying the ∆2

operator against f in equation 2.5. Since ∆2 is a fourth order differential operator, we

can immediately conclude that the affine part will disappear. Furthermore, the non-affine

part contains a linear combination of the fundamental solution of the operator itself. The

reduces the result to a linear combination of delta functions. Hence

∆2f = ∆2

n∑
j=1

cjφ(‖x− rj‖2)

= 8π
n∑
j=1

cjδ(x− rj). (2.31)

Applying this to 2.30 will give us∫
Ω

(
n∑
j=1

‖f(x)− tj‖2δ(x− rj)ψ(x) + 8πλ
n∑
j=1

cjδ(x− rj)ψ(x)

)
dx = 0. (2.32)

The delta functions are then removed through integration

n∑
j=1

(‖f(x)− tj‖2 + 8πλcj)ψ(rj) = 0. (2.33)

In order for 2.33 to hold for all test functions ψ, then the term in the parenthesis must

be 0 which gives the condition

‖f(x)− tj‖2 + 8πλcj = 0 (2.34)
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for all j = 1, . . . , n. Since λ > 0 is an arbitrary constant, 8π can be absorbed into the

regularization parameter. By invoking the original interpolation condition to the equation

above, this allows us to include the regularization parameter into the interpolation matrix

by replacing A with A + λI, where I is the n × n identity matrix. This generalizes the

solution to any thin plate spline problem as the solution to the linear systemA+ λI B

BT 0


c

a

 =

t

0

 . (2.35)

We now proceed to show that the interpolating matrix is invertible. We begin by the

introducing the definition of complete monotonicity.

Definition 2.3.1 (Completely Monotone). Let ϕ ∈ C[0,∞) ∩ C∞(0,∞), where ϕ :

[0,∞)→ R. ϕ is called completely monotone on [0,∞) if it satisfies

(−1)`ϕ(`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . .

In addition, the following theorems are necessary to deduce that the interpolating

matrix is non-singular

Theorem 2.3.1 (Hausdorff-Bernstein-Widder). Let Ψ ∈ C[0,∞). Then Ψ is completely

monotone if and only if it is the Laplace transform of a Borel probability measure on

[0,∞)

.

A variation of this theorem states that Ψ is completely monotone if and only if it is

the Laplace transform of an admissible function w(x).

Theorem 2.3.2. Let φ = C[0,∞) and ψ := φ(
√
·). Suppose that for some non-negative

integer m so that ψ(m+1) is strictly monotone, then the matrix (−1)(m+1)A is positive

definite on the subspace

Sm(X) := {c ∈ Rn :
n∑
j=1

cjp(xj) = 0}
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where p(x) is a polynomial of degree at most m, and A is the matrix with elements

aij = ψ(‖xi − xj‖).

Detailed proofs of these theorems can be found in books by Cheney and Light [2].

For thin plate splines, we consider the radial basis function φ(r) used for the interpolant.

We can define ψ(r) = φ(
√
r) = r ln(r). Notice that ψ(m+1) is monotone for every m ≥ 1,

with ψ(2)(m + 1) = 1/2r with the corresponding admissible function w(x) = 1/2 by the

Hausdorff-Bernstein-Widder theorem. The second theorem indicates that the matrix A

that was originally constructed must be positive definite on the subspace S1(X): the

subspace of linear polynomials. This dictates the conditions imposed by the bottom

block of the interpolating linear system.

Theorem 2.3.3. Suppose A is positive definite on ker(BT ) and the columns of B are

linearly independent, then the block matrix A B

BT 0


is non-singular.

Proof. We show that the block matrix is invertible by showing that it has a trivial

nullspace. Suppose that  A B

BT 0


c

a

 = 0,

this gives us the coupled equations Ac + Ba = 0 and BTc = 0. The second equation

says that c ∈ ker(BT ). We then multiply the first equation by cT

cTAc + cTBa = 0.

However,

cTB = 0
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since this is simply the transpose of the bottom block equation. Therefore

cTAc + cTBa = cTAc = 0.

However, c must be the zero vector since A is positive definite against ker(BT ) 3 c.

Therefore, the first equation from the top matrix block becomes Ba = 0. Since the

columns of B are linearly independent columns, then B must be full rank. This implies

that Ba = 0 holds if and only if a = 0. Hence the only solution to the homogeneous

system is [c, a]T = 0 which concludes that the block matrix must be non-singular.

This indicates that the interpolation problem becomes well-posed as long as B is full

rank. Recall that B is constructed using the coordinates of the reference landmarks as

its elements, then this requirement is satisfied by ensuring that the chosen landmarks

are not co-linear. Similar to many other problems involving large linear systems, the

inverse of the matrix is never computed explicitly. Instead, the coefficient vectors are

recovered by more efficient numerical methods such as LU decomposition, or Cholesky

decomposition. To observe the behaviour and shape of the thin plate spline, a toybox

model is constructed using the following data points:

{rj} = {(−1, 1), (1,−1), (1, 1), (−1, 1)}

{tj} = {(−0.63,−1.32), (1.41,−0.94), (0.72, 1.18), (−1.21, 0.82)}

Figure 2.1 shows the TPS interpolant obtained using the data points listed above for

parameter values λ = 0, 5, 10. It can be seen that the deformations of the spline occur

near the centres of the radial basis functions, then approaches the linear plane as the

distance to these centres become large. As the regularization parameter λ increases, the

local deformations caused by the non-linear terms of the spline shrinks. In the limiting

case as λ → ∞, the spline becomes a flat plane, which corresponds to the least square

fit of the data points to a plane.
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Figure 2.1: Thin Plate Spline with various λ values.

2.4 Application of TPS in Image Registration

In image registration, thin plate spline is used to model the displacement of landmarks.

In particular, it interpolates the coordinate displacement of each pixel of the image as

it is crucial that the geometric structure of the image is preserved. Therefore, for each

2-dimensional image registration problem, there will be two different thin plate spline

interpolants, where the first spline models the coordinate changes in the x1 direction,

and the second spline models the coordinate changes in the x2 direction. In the previous

section, it was shown that obtaining the coefficients of a TPS problem reduces to solving

a single matrix-vector system. Since this matrix contain no dependency on the template

landmarks, this system can be easily extended to obtain all the coefficients required for

each spline in a single step. This is done by modifying the existing matrix-vector system

to a matrix-matrix system through augmenting the solution vector into a n× 2 solution

matrix. More explicitly, the linear system now becomes

A+ λI B

BT 0


c1 c2

a1 a2

 =

t1 t2

0 0

 (2.36)

where [ci, ai]T and ti are the vector of the thin plate spline coefficients and template

landmark locations in the i’th coordinate direction. As a result, the thin plate spline
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interpolants of a 2-dimensional registration problem can be characterized by

f 1(x) = a1
0 + a1

1x1 + a1
2x2 +

n∑
j=1

c1
jφ(‖x− rj‖2), (2.37)

f 2(x) = a1
0 + a1

1x1 + a1
2x2 +

n∑
j=1

c2
jφ(‖x− rj‖2). (2.38)

Figure 2.2 is a practical application of landmark registration using thin plate spline

Figure 2.2: TPS registration: X-Ray of a hand, λ = 0. [6]

where the left, centre, and right images are the reference image, template image, and the

transformed reference image respectively. The sets of landmarks {rj} and {tj} are shown

using red and green markers, with the adjacent number identifying the correspondence

between these landmarks. In the right image, registration takes place where the reference

image is transformed to line up with the template image under the constraints imposed

through TPS. Note that in the transformed image, the corresponding landmarks line up

perfectly. This indicates that f(rj) = tj for all j = 1, . . . , n. Thus this corresponds to

TPS registration using λ = 0.

Figure 2.3 is the same registration problem with λ = 1000. It can be seen in this

case that the landmarks no longer line up perfectly. This indicates that the original

interpolating conditions are lost as the numerical value of λ increases. However, despite

the misalignment of the landmarks, there is a visual improvement in the registration



Chapter 2. Thin Plate Spline (TPS) 17

Figure 2.3: TPS registration: X-Ray of a hand, λ = 1000. [6]

result. This is due to the skeletal structure of the hand, as the bones should undergo

a rigid transformation as opposed to a transformation simulating the bending of a thin

metal plate. By raising the value of λ, the affine part of the registration scheme overtakes

the non-linear deformation which experiences less bending. This in turn preserves the

rigidness of the bones themselves.

Note that these examples are included in the textbook of Modersitzki, Flexible Al-

gorithms for Image Registration (FAIR) [6], and requires a licensed version of MATLAB

to replicate the examples.



Chapter 3

Errors in Landmarks

3.1 Motivation

As indicated before, thin plate splines are highly useful in landmark-based medical image

registration. These landmarks are placed either manually as physical landmarks, or

automatically by a computer through a feature-identifying algorithm. In both cases,

errors of landmark placements are naturally very likely to occur. This may be caused by

a number of reasons, such as misplacement of physical landmarks (human error), error

in detection of landmarks (machine error), or sometimes even natural errors such as the

breathing cycle of the patient. Therefore, it is beneficial to determine a confidence in the

registration result based on the confidence in the given landmarks.

To investigate how errors affect the interpolant, errors were randomly generated from

a uniform distribution and were applied each template landmark in the hand example

from the previous chapter. These errors are bounded above by 2 in a 20× 25 domain.

Figure 3.1 shows a comparison between TPS registration results using the original

landmarks, and landmarks that were exposed to errors. It can be seen in the second

image that the fingers in the second image are bending in unnatural ways due to the

errors added onto the landmarks. This gives an incentive on analyzing the change in

18
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Figure 3.1: Comparison of original (left) and error prone (right) TPS interpolant.

the interpolant due to landmark errors as it may lead to potential misdiagnosis. In this

chapter, we will explore how the interpolants are affected by imposing small random

errors to individual landmarks, where the magnitude of these errors will be bounded by

some small fixed value. We will aim to provide an upper bound to absolute difference

between the two TPS interpolants.

3.2 Error Analysis of TPS

In Chapter 2, we visited the mathematical background of TPS, where the coefficients of

the interpolant are determined by solving the linear systemA+ λI B

BT 0


c

a

 =

 t

03

 (3.1)

where the first matrix is represented by L. This matrix, by construction, is only de-

pendent on the reference landmarks {rj}, and independent from the template landmarks

{tj}. In addition, the closed form solution of the TPS interpolant is also independent of

the template landmarks, by using reference landmarks as the centres of the radial basis
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functions. By adding errors to the template landmarks only, this preserves the structure

of the matrix L and the basis functions of the interpolant. The changes in the interpolant

will then be fully characterized by how the TPS coefficients change as errors are intro-

duced to the template landmarks. Suppose that for every template landmark {tj}, an

error term εij is added in the i’th spatial dimension, with |εij| < ε ∀j = 1, . . . , n, ε > 0, i.e.

the magnitude of the errors are bounded by a fixed positive number. Since the reference

landmarks were unchanged, then this new TPS will be in the form

gi(x) = ãi0 + ãi1x1 + ãi2x2 +
n∑
j=1

c̃ijφ(‖x− rj‖2). (3.2)

This allows us to define the error function

Ei(x) = |gi(x)− f i(x)|

=

∣∣∣∣∣(ãi0 − ai0) + (ãi1 − ai1)x1 + (ãi2 − ai2)x2 +
n∑
j=1

(c̃ij − cij)φ(‖x− rj‖2)

∣∣∣∣∣ (3.3)

which is the error function that we wish to find the upper bound for. Note that this

error function is also in the form of a TPS interpolant. Therefore, these coefficients can

be solved using the regular thin plate spline method. Let c̃i, ãi represent the coefficients

associated with the TPS interpolant subject to errors, then we can solve for the coefficient

vectors ãi and c̃i through the following linear system.

L

c̃i

ãi

 =

ti + εi

0

 (3.4)

where εi = (εi1, . . . , ε
i
n)T is a vector of errors. Thenc̃i

ãi

 = L−1

ti + εi

0


= L−1

ti

0

+ L−1

εi
0


=

ci

ai

+ L−1

εi
0i


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From here we can see that c̃i − ci

ãi − ai

 = L−1

εi
0

 . (3.5)

Using a norm-based approach, we deduce the following:

Ei(x) =

∣∣∣∣∣(ãi0 − ai0) + (ãi1 − ai1)x1 + (ãi2 − ai2)x2 +
n∑
j=1

(c̃ij − cij)φ(‖x− rj‖2)

∣∣∣∣∣
≤

∥∥∥∥∥∥∥
ãi − ai

c̃i − ci


∥∥∥∥∥∥∥

2

∥∥∥∥∥∥∥
φ(‖x− rj‖2)

xi


∥∥∥∥∥∥∥

2

(Cauchy-Schwarz Inequality)

=

∥∥∥∥∥∥∥L−1

εi
0


∥∥∥∥∥∥∥

2

∥∥∥∥∥∥∥2

φ(‖x− rj‖2)

xi


∥∥∥∥∥∥∥

2

≤ ‖L−1‖2‖εi‖2

∥∥∥∥∥∥∥
φ(‖x− rj‖2)

xi


∥∥∥∥∥∥∥

2

(3.6)

We now evaluate each individual norms. For any square matrix A, since ‖A‖2
2 = ρ(ATA),

where ρ(A) is the spectral radius of A, i.e. its largest eigenvalue, then

‖L−1‖2 =
√
ρ((L−1)TL−1)

=
√
ρ((LT )−1L−1)

=
√
ρ((LLT )−1)

=
√
µmax(LTL)−1

=
1√

µmin(LTL)

=
1

σmin(L)
(3.7)

where µ and σ denotes the eigenvalues and singular values of L. For the second norm,

we have

‖εi‖2
2 =

n∑
j=1

|εij|2

≤ nε2. (3.8)
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Therefore ‖εi‖2 ≤
√
nε. For the third norm, note that the norm diverges to infinity as x

approaches infinity. Hence it is impossible to obtain an upper bound unless the domain

is restricted to a bounded subset of R2. By applying equations 3.7 and 3.8 to equation

3.6, we obtain an upper bound for Ei(x) as

Ei(x) ≤
√
nε

σmin(L)

∥∥∥∥∥∥∥
φ(‖x− rj‖2)

xi


∥∥∥∥∥∥∥

2

. (3.9)

3.3 Numerical Computations

Using the upper bound obtained from the previous section, we generate a colour map of

the numerical values of Ei(x) using the hand example originally shown in the beginning

of the chapter. Since the upper bound obtained depends the norm of a vector of the basis

functions, it is expected that this norm is the smallest at a point near the centre of mass

of the reference landmarks. Figure 3.2 was produced by setting εi = 1 and λ = 100.

Figure 3.2: Colour map of Ei(x) under the original domain, origin at the centre of mass of

landmarks, and their difference.

The left image shows the colour map as-is under the domain Ω = [0, 20]× [0, 25] with

a 125 × 125 discretization grid. Then, the domain is translated such that the origin is

located at the centre of mass of the reference landmarks. This is shown in the middle

image. Finally, the right image shows the difference between the left and middle images.

The blue markers denote the location of the reference landmarks, and the red marker is
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the location of the centre of mass. A visual inspection of figure 3.2 does confirm that the

error bound is minimized near the centre of mass of the landmarks. More precisely, it is

minimized where the norm in the error bound attains its global minimum. However, note

that the errors in these images are in the order of 106. Breaking down the upper bound

of equation 3.9, it was discovered that the smallest singular value of L was in the order

of 10−7. Hence, dividing by σminL significantly raised the upper bound of Ei(x). This is

later confirmed when the condition number of L was computed, which corresponded to

κ(L) ≈ 2.1 · 1011. This indicates that there is a huge fluctuation in the eigenvalues of L,

thus making eigenvalue/singular value based upper bounds large in numerical value.

Another issue of this upper bound is due to the norm-based approach. Since this

approximation is dominated by a norm, the surface generated by the numerical values of

the error form a convex surface. This is shown in the images by how numerical values

of errors propagate radially outwards from the centre. An ideal result would provide a

colour map where the values of the errors are reflected based on the distance from the

nearest landmarks. This will emphasize the importance of landmark placements and

indicates the confidence of the registration result based on subregions of the image.



Chapter 4

Conclusion and Future Work

4.1 Summary of Results

The use of thin plate splines in image registration provides a transformation that is

independent of pixel intensity information. As the name suggests, the regularizer was

designed to mimic the bending energy of a thin metal plate. As a result, this registra-

tion method is preferred for situations where objects deform nonlinearly in a controlled

manner. This was confirmed with the hand example in the previous chapter, where the

regularization parameter needed to be manually tuned in order to somewhat maintain

the skeletal structure of the hand. For this scenario, an affine-based landmark registra-

tion method will yield better results as the transformation will be limited to only sheer,

rotation, and translation, which will aid in preserving the rigidness of the bones. On the

other hand, TPS excels at registering images of objects where nonlinear deformations

are allowed, such as images of brain, muscle, and/or tissue based organs. Depending

on the type of tissue present in the images taken, the level of deformation allowed can

be controlled simply by adjusting the regularization parameter. Thin plate spline will

continue to serve as an extremely valuable registration method as its unique closed form

solution provides significantly reduced computation time. This is a huge advantage over

24
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many intensity-based registration techniques which are often ill-posed inverse problems.

Due to the iterative nature of these types of problems, it takes much longer to recover

feasible functions as candidate solutions.

4.2 Future Work

The original goal of chapter 3 was to find an upper bound of registration errors caused

by landmark errors. Using a norm based approach, an upper bound was discovered but

concluded that the upper bound was extremely loose. In addition, colour map of the up-

per bound values did not give clear information on how error-induced landmarks affected

the interpolant. Therefore, this cannot be translated to a practical setting. Ultimately,

the optimal goal is to determine a much stricter upper bound for the registration error

that depends on the distance from the closest landmark. This may allow us to provide

a confidence level on accuracy of the registration problem at any location of the image

chosen by the user. There are, however, a number of items that will need to be addressed

prior to reaching that stage.

• Numerical values of upper bound: This will be one of the most important

aspects to improve on. Even though the errors were bounded to 1 in a 20 × 25

domain, the order of the upper bound was in the millions. This was caused primarily

due to the poorly conditioned matrix L, where dividing by its smallest singular value

dramatically raised the values of the upper bound.

• Norms of basis functions: The upper bound obtained in this thesis was es-

sentially a constant multiplied by the norm of the vector of basis functions. It

may be beneficial to determine a new upper bound that does not depend on this

norm as this leads to error propagating from the point where this vector of basis

functions is minimized. As a result, the magnitude revolves around the distance

from this central point instead of its distance from the nearest landmark. Weights
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that depend on the distance from the landmarks may also be introduced to further

improve the error bound. However, these weights must be carefully modelled to

preserve mathematical accuracy so they do not appear artificial.

• Errors in all landmarks: For the experiments performed, errors were placed only

on template landmarks. This was done intentionally as introducing errors to refer-

ence landmarks will also change the radial basis functions of the TPS interpolant.

The ultimate goal is to provide a general analysis where perturbations are applied

to all landmarks, rather than a particular chosen subset.

• Further study of radial basis kernels and their effects under error: This

will arise naturally by considering errors in all landmarks. Since the radial basis

functions are centered around one set of data points, introducing errors to these data

points will automatically change the basis functions. In addition, the interpolating

matrix will also be affected which may impact its invertibility in the scenario where

data points are tightly clustered together.

• Extension to higher dimensions: Extension to 3D may prove to be extremely

useful clinically. This enables registration of entire 3D objects as opposed to two

dimensional slices. Thus allowing accurate registration to fully reconstruct entire

organs of interest. In particular, this will greatly aid in tracking internal ailments

such as tumours and lesions. It may also be extended to even higher dimensions

as this may be valuable in the application of data analytics. Fully understanding

how TPS is affected may also assist in generalizing how data errors may affect the

class of polyharmonic splines as a whole.
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