
Multi-objective ADAM Optimizer (MAdam)

Farzaneh Nikbakhtsarvestani1, Mehran Ebrahimi2 and Shahryar Rahnamayan3

Abstract— Multi-objective optimization is a prevalent chal-
lenge in the area of deep learning. There is a lack of robust
multi-objective optimization methods applicable in deep learn-
ing capable of training networks by simultaneously optimizing
conflicting multiple loss functions. Its applications include a
wide range of deep neural network branches such as multi-
loss, multi-task, multi-modal, and cross-modal learning. In
this paper, we develop MAdam as a multi-objective extension
of the well-known Adam optimization algorithm. MAdam is
a classical population-based approach that uses the gradient
information of multiple objectives to accelerate population
convergence toward an optimal minimum. The method applied
a non-dominated sorting algorithm to keep selective population
members and improve the diversity across the landscape. The
performance of MAdam is evaluated on the standard ZDT test
functions as the proof of concept. Promising results show the
capability of this approach to converge towards an estimated
Pareto front and to generate a well-distributed set of non-
dominated solutions.

I. INTRODUCTION

In many real-world problems, optimization of a single
objective may not be sufficient to fully capture the whole
requirements of a real-world, such as, minimizing cost and
maximizing the performance. Improving one objective might
come at the expense of deteriorating another conflicting
objective. Any multi-objective optimization (MOO) problem
involves a trade-off between the objective in order to achieve
an acceptable balance. This requires the MOO algorithm to
consider multiple objectives simultaneously to create a set of
trade-off solutions for a decision-maker. Generally speaking,
machine learning is based on optimizing some decision
variables; which is inherently a multi-objective task for many
real-world problems. This means that the learner has to come
up with a model that performs well across multiple losses
L1, · · · , Lp, as opposed to a single one [3]. Particularly,
multi-task learning refers to learning a prediction model for
solving multiple tasks as a multi-objective problem since
different tasks may be in conflict, necessitating a trade-off.
Multi-task learning in computer vision has gained significant
success in deep learning. An ultimate visual system for full
scene understanding must be able to perform diverse percep-
tual tasks simultaneously and efficiently, especially within
the limited computing environments of embedded systems

1Farzaneh Nikbakhtsarvestani, Faculty of Science, Ontario Tech
University, 2000 Simcoe St N, Oshawa, ON, Canada, L1G 0C5
farzaneh.nikbakhtsarvestani@ontariotechu.net

2Mehran Ebrahimi, Faculty of Science, Ontario Tech
University, 2000 Simcoe St N, Oshawa, ON, Canada, L1G 0C5
mehran.ebrahimi@ontariotechu.ca

3Shahryar Rahnamayan, SMIEEE, Department of Engineering, Brock
University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S
3A1 srahnamayan@brocku.ca

such as smartphones, wearable devices, and robots/drones
[4]. Multi-Objective-Optimization (MOO) aims to find a set
of solutions as close as possible to the optimal Pareto front
and as diverse as possible. MOO formulates the problem
of learning from multiple objectives as discovering a set
of Pareto optimal solutions expressing trade-offs among the
objectives [5]. There has been a steadily increasing interest in
the application of MOO in deep learning, where the learning
process is framed as an optimization problem. In such cases,
multiple loss functions are simultaneously optimized and
used to evaluate whether the forecast distribution matches
the target variables in the training data. At the stage of
designing a machine learning model, the designer examines
many parameters that should be included in the model. For
instance, in addition to demanding high prediction accuracy,
it may be beneficial to have a simple classifier that could
be scaled to previously unknown data. Likewise, while
training a lossy image compression model, one optimizes
the size and quality of the compressed images. Multiple loss
functions should be minimized concurrently. In such cases,
representing a distinct aspect of the problem is a crucial
challenging requirement. The role of an optimizer in deep
learning is to adjust the weights and learning rate of the
nodes of the model under the training process, such that it
successfully minimizes the loss function. Adaptive moment
estimation (Adam) is the most popular of all the optimizers in
this area. Adam algorithm is relatively simple to implement
and is suitable for problems with very large datasets. Adam
is a desirable algorithm for deep learning since it has a low
error rate and a high rate of accuracy [1]. Here are some of
the advantages of using Adam Optimizer.

• Adaptive learning rate: Adam uses adaptive learning
rates for each parameter, which means it can adjust the
learning rate on a per-parameter basis. This helps the
algorithm converge faster and can prevent overfitting.

• Momentum-based updates: Similar to other optimiza-
tion methods such as stochastic gradient descent with
momentum (SGDM), Adam uses momentum-based up-
dates that help the algorithm overcome local minima
and saddle points in the loss landscape.

• No need for manual tuning of hyperparameters: Adam
has fewer hyperparameters to tune compared to other
optimization methods, making it easier to use by re-
ducing the need for manual tuning.

• Efficient memory usage: Adam uses only first-order gra-
dients and second-order moments of gradients, which
require less memory than other optimization methods,
e.g., second-order methods such as Newton’s method.

2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
October 1-4, 2023, Oahu, Hawaii, USA

979-8-3503-3702-0/23/$31.00 ©2023 IEEE 3860

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ys
te

m
s,

 M
an

, a
nd

 C
yb

er
ne

tic
s (

SM
C)

 |
 9

79
-8

-3
50

3-
37

02
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SM
C5

39
92

.2
02

3.
10

39
45

33

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

• Robustness to noisy gradients: Adam is also robust to
noisy gradients, which can occur in some cases, such
as when using batch normalization or dropout layers.

• Proper default settings: Adam has good default settings
for the hyperparameters, which makes it a good choice
for most deep-learning tasks.

The existing machine learning tools are currently based on
standard optimizers with a single loss (objective) function.
Committing to a single objective (loss function) often fails
to capture the full complexity of the underlying problem
and causes models to overfit to that individual objective.
Multi-loss functions may be able to prevent the algorithm
away from overfitting to one single loss function. In the
basic form, Adam is subject to a single objective optimizer.
As a result, Adam cannot easily be applied to training a
lossy image compression model whose target is optimizing
bi-objective as the size and the quality of the compressed
images concurrently. On the other hand, the goal of MOO is
to generate a Pareto front of non-dominating solutions, in a
way that a practitioner selects a post hoc solution based on
the achieved trade-offs among objectives. Several attempts
to tackle MOO for deep learning focused on addressing
multi-task learning through gradient descent to find a single
solution on the Pareto front [7], [2].
Inspired by the success of Adam optimizer and the impor-
tance of using MOO in deep learning, in this paper we
propose a new approach to close this gap. The proposed
algorithm, which will be referred to, from this point of this
paper, as MAdam, is a hybrid optimizer.
The classical Adam algorithm was carefully modified and
expanded to develop an Adam-based MOO optimizer. The
extensions of the work have the potential to be utilized
for multi-loss optimization in deep learning. MAdam was
designed for solving population-based MOO problems and
applying ADAM, as shown in Fig.1.
Adam optimizer was applied to accelerate the convergence.
NDS and crowding distance algorithms were interfaced with
Adam for the simultaneous exploration of objectives in
order to obtain uniformly distributed MOO solutions. The
significance of MAdam is due to its suitability for being
used as the optimizer of choice when scaling deep learning
for solving MOO problems. This is achieved by fulfilling two
important advantages: i) starting off with uniform random
initialization which helps to explore the search space more
widely; ii) it also comes along with an increased chance of
finding multiple trade-off solutions and preventing optimal
points from being stuck in a local optimum; and iii) it
generates the entire Pareto front in a single run.

II. BACKGROUND

A. Preliminaries

1) Multi-Objective Optimization: In multi-objective opti-
mization, the goal is to minimize a vector-valued objective
function f(x) = [f1(x), · · · , f (M)(x)] ∈ RM , where M ≥ 2
while satisfying black-box constraints g(x) ≥ 0 and x ∈
χ ⊂ Rd, and χ is a compact set. Usually, there is no single

solution x∗ that achieves the optimum that simultaneously
minimizes all M objectives; when the objectives are in
conflict. We can obtain a set of Pareto optimal solutions
according to the following definitions.

Definition 2.1: (Pareto dominance). An objective vector
f(x) pareto-dominates f(x′), denoted as f(x) ≺ f(x′), if
f (m)(x) ≤ f (m)(x′) for all m = 1, · · · ,M and there exists
at least one m ∈ {1, · · · ,M} such that f (m)(x) < f (m)(x′).
When there is no solution that dominate any of the members
of the Pareto front, it is called an optimal Pareto front.

2) Adam Optimization: The Adaptive Movement Estima-
tion algorithm, or Adam for short, is an extension to the
gradient descent method and combines the advantages of
two recently popular methods AdaGrad [10] and RMSProp
[11]. Adam is a method for efficient stochastic optimization
that only requires first-order gradients with little memory
requirement. The method automatically adapts a learning
rate for each input variable for the objective function and
further enhances the search process by using an exponen-
tially decreasing moving average of the gradient to make
updates to variables. Some of Adam’s advantages are that
the magnitudes of parameter updates are invariant to re-
scaling of the gradient, the step sizes are approximately
bounded by a hyperparameter, it does not require a stationary
objective, it works with sparse gradients, and it naturally
performs as a form of step size annealing [1]. That is better
to say than converting multi-objective to single objective by
using weighted summation is not proper to solve a multi-
objective problem, because a portion of the solution space
would not be acceptable and also it ends up with a single
solution not optimal PF solutions. In addition, the number
of function evaluations is significantly reduced, resulting
in a more efficient computation. This concept is wisely
adopted in Adam. The step size for each input parameter is
automatically adapted throughout the search process, based
on the gradients (partial derivatives) with respect to the
variable.

3) Non-Dominated Sorting Algorithm: Non-dominated
sorting (NDS) is a commonly used algorithm in multi-
objective optimization, where the goal is to optimize
multiple objectives simultaneously. The algorithm is used
to partition a set of candidate solutions into different fronts,
where the solutions in the first front are not dominated by
any other solutions, the solutions in the second front are
not dominated by the solutions in the first front, and so on.
This algorithm is efficient in obtaining optimal Pareto fronts
for any number of objectives and can accommodate any
number of constraints as well. The pseudo-code of NDS
algorithm is provided in algorithm 1.

4) Crowding Distance: Each candidate solution is asso-
ciated with a rank based on the NDS criteria, which is a
diversity maintenance mechanism, called crowding distance.
It provides NDS with an estimation of the distance between
the closest two members among the entire solution. The idea
is to measure the distance between neighboring solutions in
the objective space and use this measure to encourage the

3861

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Non-dominated sorting
input: Front (F), Population (pop)
output: rank
1: Let rank counter r be zero
2: Increase: r = r + 1
3: Find the non-dominated individuals, S, from population
pop
4: rankp ← r ∀p ∈ S
5: Remove these individuals from pop and continue.
6: If Pop is empty then stop, else go to step 2.

algorithm to find a diverse set of solutions that cover the
entire Pareto front. The pseudo-code of the crowding distance
algorithm is provided in algorithm 2.

Algorithm 2 Crowding Distance
input: Front (F); number of individuals in the front (nf);
the number of objective functions (nobj)
output: distance (d)
1: Let dk = 0 for k = 1, 2, · · · , nf
2: For each objective function fi, i = 1, 2, · · · , nobj (sort the
set in ascending order)
3: Let d1 and dnf be maximum values, e.g. d1 = dnf =∞
4: For j = 2 to nf − 1, set dj = dj +Σ

nobj

k=1
fi(j+1)−fi(j−1)

fi(nf)−fi(1)

B. Related Work

Previous attempts for the development of MOO optimizer
for deep learning were concentrated on solving the problem
of multi-task learning [7] by descending via the Pareto front
until a single solution is found. Additional follow-up strate-
gies offer to populate a set of Pareto optimal solutions by
learning multiple neural networks along preference vectors
[8], [9]. Preference vectors encode the predefined relative
importance of each objective. Two recent ideas proposed
conditioning the network’s weights to the preference vector
through hyper-networks [12]. A novel method that scales
MOO to deep learning is proposed in [6]. This method
conditions the predictions of the neural network to the pref-
erence vectors. Through this method, the full Pareto front of
solutions is generated in a single optimization run, contrary
to methods that train one network per point in the Pareto
front. However, MOO in [6] was treated as single-objective
optimization through linear scalarization and utilizing this
method for MOO does not allow controlling values of indi-
vidual objective functions during the optimization process.
It creates serious problems in finding an evenly distributed
optimal Pareto front.

III. PROPOSED ALGORITHM

We propose MAdam to find the Pareto front via hybridiza-
tion of two optimization procedures. We use the Adam opti-
mizer to construct descent direction of each multi-objective
toward the optimal point. In addition, we adopt a multi-
objective evolutionary algorithm based on non-dominated

sorting and crowding distance to select the best solutions and
improve the diversity, respectively. Also, MAdam includes
a population-base approach. This idea is originated from
evolutionary methods, while most of classical methods are
based on a single solution approach. Generally, to balance the
convergence and the diversity, a mechanism alternately using
Adam optimizer and NDS is designed for solving MOO
problems in this article. The population-based Adam is used
for the exploitation to accelerate the convergence and NDS
is used for the exploration and to find a better distribution of
Pareto front solutions. As shown in Fig.1, MAdam algorithm
consists of five major components: Random initialization, the
core of MAdam optimizer, finding non-dominated sorting,
crowding distance calculation, and finding elitist population
for the next iteration.

A. Initialization of MAdam

Considering a population-based Adam the random popu-
lation initialization of MAdam is bounded by [0, 1], whereas
the data is scaled to this range. MAdam is sensitive to the
initialization used within the first raw population which is
similar to single-solution based Adam. We used a single
objective Adam optimizer for two different objective func-
tions. Adam starts the search from a random point in the
bounds of the problem and returns the optimal points for
each objective. We consider the optimal point obtained via
Adam optimizer as the first and the second individuals of
MAdam initialization.

B. MAdam

MAdam is designed to incorporate Adam in a MOO
optimizer. It includes the following components:

• In MAdam, we have two or more conflicting objectives,
which is significant because it allows decision-makers
to consider and to evaluate trade-offs among compet-
ing objectives. Each objective has a different descent
direction.

• The dataset of MAdam stores information of each
population member. During each iteration, this dataset
is updated with the latest gradient direction. This dataset
includes the first and the second moments of gradients
with respect to each variable, the bias corrections of
the first and the second moments of the gradients, the
updated variable in decision space, and their associated
scores in objective space (Algorithm 4).

• MAdam identifies Pareto-optimal solutions, which are
solutions that cannot be improved upon in one objective
without sacrificing performance in another objective.
This allows decision-makers to make informed deci-
sions and trade-offs based on their priorities and pref-
erences. To do so, all points move progressively toward
the optimal point in each iteration, therefore MAdam
terminates when the maximum number of iterations is
reached.

The framework of modified Adam is shown in Algorithm
3. The random population is generated first, and the first
individuals are assigned to Adam search performance. Next,

3862

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

we run a fixed number of iterations of the algorithm de-
fined by maxiter for each gradient direction. In this step,
MAdam dataset is called to update the dataset information
of each member of the population and then two datasets are
interconnected. Then, the objective values of concatenating
dataset are excluded to identify solutions of the first non-
dominated front. In the last stage, the elitist individuals which
correspond to the first front are selected for the next iteration.
When the maximum number of iterations is reached, MAdam
terminates.

C. Selecting Elitist Population

For each member of the population, MAdam database
stores the values of objective functions of updated points
along each descent direction. After that, by concatenating the
objective values of f1, f2, · · · , fM for the entire population,
non-dominated sorting (Algorithm 1) and crowding distance
(Algorithm 2) are employed to remove the dominated
solutions and to keep the best individuals in the population
and maintain the diversity in search space, respectively.
Once the sorting is performed with respect to crowding
distance, then the elitist individuals in the population are
selected from the dataset based on the rank indices to
exploit and explore the landscape for the next iteration.
According to the information from the previous iteration,
the new database is updated.

Algorithm 3 MAdam Framework
Input:

• maximum number of iteration maxiter

Output: elitist individuals S

• 1: Adam optimizer for each objective function

• 2: Popset = Generate random numbers in [0, 1] with
population size Npop that start from the points
achieved from 1

• 3: Define MAdam datasets (MDs) corresponding to
gradients ∇f1,∇f2, · · · ,∇fM by (Algorithm 4)

• 4: initialize MD’s with Popset

for t← 1 to maxiter do
5: S = ∅
/*Exploitation*/
6: update MD’s
7: concatenate two database
/*Exploration*/
8: excluding objective values information from concate-
nated MD
9: NDS (Algorithm 1) to find front
10: crowding distance (Algorithm 2) to find rank
11: Finding corresponding population and their informa-
tion with rank indices from concatenated MD and update
S

D. Exploitation

The exploitation is to speed up the convergence by making
the population search. Algorithm 4 presents the scheme of
the exploitation. The first step is to calculate the partial
derivative of each dimension. For number of objectives j =
1, · · · ,M and a vector Z = (z1, · · · , zn),

dfj
dZ

=

(
∂fj
∂z1

, · · · , ∂fj
∂zn

)
.

Next, MAdam calculation updates the information dataset
of each population. Lines 2 and 3 calculate the first and
the second moments, respectively. Lines 4 and 5 indicate the
bias correction of the first and the second moments. Then, in
line 6 the variable values are updated. This is then repeated
for each dimension. In line 7 and 8, the functions of an
updated variable are evaluated and are assigned as the input
of Algorithm 1.

Algorithm 4 Pseudocode for updating MAdam dataset for
M=2 objectives
Input:

• Dimension D.
• objective functions fj , j = 1, · · · ,M = 2,
• partial derivatives ∇ifj(x), i = 1, · · · , D
• Population Popset
• t: Time
• α: Step size
• β1, β2 ∈ [0, 1) Exponential decay rates for the moment

estimate
• ϵ = 10−8

• bounds: define range for input population
Output: updated MAdam dataset (MD)

1 for x ∈ Popset do
2 1: gt = ∇xk

fj(xk−1) for k = 1, · · · , D
j = 0
for i ← 0 to D − 1 do

3 2: MD[x, i+ j]← β1 ∗m[x, i] + (1− β1) ∗ gt[i]
3: MD[x, i+1+j]← β2∗v[x, i+1]+(1−β2)∗gt[i]2
4: m̂← MD[x,i+j]

(1−βt+1
1)

5: v̂ ← MD[x,i+1+j]

(1−βt+1
2)

6: MD[x, i+ 2 + j]← MD[x, i+ 2 + j]− α. m̂√
v̂+ϵ

j = j + 2

4 7: MD[x, 6] ← f1(MD[x, 0], · · · ,MD[x,D]) (Update
f1-values)
8: MD[x, 7] ← f2(MD[x, 0], · · · ,MD[x,D]) (Up-
date f2-values)

E. Exploration

The next step of MAdam explores the search space to
find the best individuals for the next iteration. The objective
values of the previous step information dataset compete
together while the best solution (i.e, non-dominated so-
lutions) are selected for the next generation. We applied
the well-known multi-objective optimization algorithm NDS

3863

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

(Algorithm 1) which is one of the most robust algorithms
widely used to find the uniform spread of solutions and
desirable convergence near the true Pareto-optimal front.
In the exploration stage, the algorithm starts with deter-
mining all non-dominated solutions in the first rank. The
non-dominated vectors are eliminated from the set and the
remaining candidate solutions are then processed in the same
manner in order to determine the second rank of individuals.
The second level of individuals is made by solutions from
this step that are not dominant (second Pareto). After that, the
second-ranked individuals will be eliminated to determine the
third Pareto. This procedure will continue until all individuals
are sorted into distinct Pareto ranks. After assigning a rank
to each solution based on the non-domination criterion, to
maintain the diversity in search space, a niching approach
crowding distance (Algorithm 2) is used to estimate the
distance between the nearest two members for each solution.

The crowding distance parameter that is incorporated in
MAdam algorithm serves as an estimate of the perimeter
of the cuboids formed by using the nearest neighbors. It
is performed by obtaining the average Euclidean distance
of two points on either side of the point along each of the
objectives in objective space. Fig.1 represents the schematic
demonstration of MAdam algorithm.

IV. EXPERIMENTAL RESULTS

In this section, to empirically evaluate the proposed
method, we investigate the MAdam capability to get close
to the optimal PF. The results are based on the well-known
multi-objective benchmark ZDT functions, ZDT1, ZDT2,
ZDT3 and ZDT4 borrowed from the literature (Table I).
The Pareto fronts of the ZDT functions are well-defined,
which makes it easy to evaluate the performance of multi-
objective optimization algorithms. All of these problems have
two objective functions. These MOO functions are based on
the following definition{

min f1(xxx)
min f2(xxx) = g(xxx)h(f1(xxx), g(xxx)).

(1)

Each call of MAdam performance is reported in terms
of the objective functions and their partial derivatives with
respect to each dimension, the last updated dataset, the
number of iterations, and the hyper-parameters, such as
learning rate and momentum. The number of MAdam calls
is

Number of MAdam Call = maxiter ∗Npop ∗M,

where M is the number of objectives. MAdam inherits
Adam hyperparameters that are tuned based on empirical
testing. The parameters for MAdam are adjusted as input
range [0, 1] , i.e., random points are initialized in this
range as starting points, furthermore the number of objectives
(M = 2), initial step size (learning rate) α = 0.02, decay
factor for first momentum β1 = 0.4, and decay factor
for infinity norm β2 = 0.999. We assume 100 iterations
while at each iteration we have a population of candidate
solutions with the size of Npop = 100. Since MAdam is

evaluated twice for each member of the population, the
number of selected populations may expand exponentially
in each iteration. As a result, in each step of convergence
along the descent direction, we maintain the fixed number of
population (Npop = 100). After concatenating the values of
the objective function from MAdam dataset, NDS is invoked
in each iteration. Fig. 2 shows the states of the Pareto
fronts of the ZDT benchmarks. The candidate solutions
are sorted based on their non-domination and placed into
different fronts. Interval [0, 1] was selected to explore the
dynamic competition between the two objective in each ZDT
functions and finding trade-off based on non-domination.
The trajectory of each front toward non-dominated solution
are traced during the optimization process. Individuals from
the first Parteo front dominate solutions in the second front.
Identically, the individuals from the second front dominate
the third front. The same principle applies to the dominance
of Pareto front at step “n” with respect to Pareto front at
step “n+1”. After extracting the Pareto fronts, the crowding
distance algorithm was applied front-wise to maintain the
diversity of the candidate solutions. The average crowding
distance was used to determine population diversity. The
computational time of MAdam is influenced by the number
of population and maximum number of iterations.

In ZDT1, ZDT2, and ZDT4 there are multiple trajectories
of points seeking the solution of the MOO problem and
eventually shaping the last state of the Pareto front, as shown
in Fig. 2. Both in ZDT1 and ZDT2 the resulted Pareto front
is uniformly distributed. ZDT4 has a wider spectrum than
the other ZDT benchmarks. A wider Pareto front in MOO
problems is more promising since it provides a broader range
of optimal solutions that cover a wider spectrum of trade-offs
between the objectives. Due to the comparatively lower rate
of convergence of ZDT3, higher rank of fronts are included
for this benchmark. Because of this, solutions from the prior
Pareto fronts are added to the last state of the Pareto front,
which results in a comparatively denser population in Fig. 2.
The segregate Pareto front of ZDT3 is a set of non-dominated
solutions but not as optimal as the ones on the other ZDT’s.
These solutions can still provide a useful trade-off between
the objectives. These for case studies can be seen as proof of
concept which the proposed MAdam performs well on multi-
objective optimization problems to find the optimal Pareto-
front solutions.

V. CONCLUSION

In this paper, we proposed a hybrid gradient-based search
method for solving smooth MOO problems. MAdam is the
first attempt for incorporating Adam with multi-objective
optimization. MAdam is based on searching the landscape by
starting from a random population and finding the updated
points by gradient descent in each iteration. In each iteration,
the core of MAdam keeps the information of each population
member and updates it for each gradient direction. MAdam
is iterative in nature. Non-dominated sorting determines the
rank of values of updated points. Furthermore, crowding
distance algorithm is used to maintain the diversity of non-

3864

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Flowchart of MAdam

3865

Abstract— Multi-objective optimization is a prevalent chal-
lenge in the area of deep learning. There is a lack of robust
multi-objective optimization methods applicable in deep learn-
ing capable of training networks by simultaneously optimizing
conflicting multiple loss functions. Its applications include a
wide range of deep neural network branches such as multi-
loss, multi-task, multi-modal, and cross-modal learning. In
this paper, we develop MAdam as a multi-objective extension
of the well-known Adam optimization algorithm. MAdam is
a classical population-based approach that uses the gradient
information of multiple objectives to accelerate population
convergence toward an optimal minimum. The method applied
a non-dominated sorting algorithm to keep selective population
members and improve the diversity across the landscape. The
performance of MAdam is evaluated on the standard ZDT test
functions as the proof of concept. Promising results show the
capability of this approach to converge towards an estimated
Pareto front and to generate a well-distributed set of non-
dominated solutions.

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Pareto fronts of ZDT1, ZDT2, ZDT3, and ZDT4, resulted from MAdam. ZDT1, ZDT2, and ZDT4 represent the last state of the Pareto front.
ZDT3 includes both the last state of the Pareto front and higher rank fronts.

TABLE I
ZDT FUNCTIONS DEFINITIONS

ZDT functions
Name Problem Domain
ZDT1 f1(x) = x1

g(x) = 1 + 9
D−1

ΣD
i=2xi

h(f1, g) = 1−
√

f1/g

[0, 1]

ZDT2 f1(x) = x1

g(x) = 1 + 9
D−1

ΣD
i=2xi

h(f1, g) = 1− (f1/g)2

[0, 1]

ZDT3 f1(x) = x1

g(x) = 1 + 9
D−1

ΣD
i=2xi

h(f1, g) = 1−
√

f1/g − (f1/g) sin(10πf1)

[0, 1]

ZDT4 f1(x) = x1

g(x) = 1 + 10(D − 1) + ΣD
i=2(x

2
i −

10 cos(4πxi))
h(f1, g) = 1−

√
f1/g

x1 ∈
[0, 1]
xi ∈
[−10, 10],
for
i > 1

dominated solutions. This algorithm is used in each iteration
to select the population from the least crowded area in the
objective space which results in generating uniformly dis-
tributed elitist solutions and reducing running time. Finally,
we demonstrated the effectiveness of MAdam to provide a
new approach to systematically traverse the Pareto front for
two multi-objective benchmarks in our experiments that pro-
vides results consistent to the literature for these benchmarks.

This work can be considered as a novel direction opening
paper, which proposes the Multi-objective Adam Algorithm
to train deep numeral networks for multi-loss, multi-task,
and multi-modal learning real-world problems. Furthermore,
MAdam output would have a high potential for further
development of deep neural networks algorithms and al-
lows practitioners to make real-time trade-off adjustment
among multi-loss functions after training. However, this
scheme has some hereditary shortcomings from its parent
algorithm. Selecting hyperparameters such as learning rate,
decay rates, and epsilon requires manual tuning and may

3866

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

depend on the specific problem domain, making it less
automated compared to some other optimizers. Furthermore,
due to the gradient-based nature of proposed scheme, the
algorithm may struggle to escape saddle points efficiently,
especially in high-dimensional spaces. MAdam’s adaptive
learning rate can slow down convergence in such regions.
As a potential research path, we could examine the algorithm
on other multi-objective benchmarks. We can also consider
high-dimensional problems. In addition, we could potentially
make a comparison of MAdam with other state-of the-art
multi-objective strategies.

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[2] Désidéri, J. A. (2009). Multiple-gradient descent algorithm (MGDA)
(Doctoral dissertation, INRIA).

[3] Cortes, C., Mohri, M., Gonzalvo, J., Storcheus, D. (2020). Agnostic
learning with multiple objectives. Advances in Neural Information
Processing Systems, 33, 20485-20495.

[4] Chen, Z., Badrinarayanan, V., Lee, C. Y., Rabinovich, A. (2018, July).
Gradnorm: Gradient normalization for adaptive loss balancing in deep
multitask networks. In International conference on machine learning
(pp. 794-803). PMLR.

[5] Miettinen, K. (2002). Interactive nonlinear multiobjective procedures.
Multiple criteria optimization: state of the art annotated bibliographic
surveys, 227-276.

[6] Ruchte, M., Grabocka, J. (2021, December). Scalable pareto front
approximation for deep multi-objective learning. In 2021 IEEE inter-
national conference on data mining (ICDM) (pp. 1306-1311). IEEE.

[7] Sener, O., Koltun, V. (2018). Multi-task learning as multi-objective
optimization. Advances in neural information processing systems, 31.

[8] Lin, X., Zhen, H. L., Li, Z., Zhang, Q. F., Kwong, S. (2019).
Pareto multi-task learning. Advances in neural information processing
systems, 32.

[9] Mahapatra, D., Rajan, V. (2021). Exact Pareto optimal search
for multi-task learning: touring the Pareto front. arXiv preprint
arXiv:2108.00597.

[10] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine
learning research, 12(7).

[11] Tieleman, T., Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2), 26-31.

[12] Navon, A., Shamsian, A., Chechik, G., Fetaya, E. (2020). Learning
the pareto front with hypernetworks. arXiv preprint arXiv:2010.04104.

3867

Authorized licensed use limited to: Ontario Tech University. Downloaded on October 05,2024 at 01:53:41 UTC from IEEE Xplore. Restrictions apply.

